Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38581098

RESUMO

OBJECTIVES: Participation in an external (interlaboratory) quality control (QC) programme is an essential part of quality assurance as it provides laboratories with valuable insights into their analytical performance. We describe the 10 year results of an international QC programme for the measurement of anti-tuberculosis (TB) drugs. METHODS: Each year, two rounds were organized in which serum (or plasma) samples, spiked with known concentrations of anti-TB drugs, were provided to participating laboratories for analysis. Reported measurements within 80%-120% of weighed-in concentrations were considered accurate. Mixed model linear regression was performed to assess the effect of the measured drug, concentration level, analytical technique and performing laboratory on the absolute inaccuracy. RESULTS: By 2022, 31 laboratories had participated in the QC programme and 13 anti-TB drugs and metabolites were included. In total 1407 measurements were reported. First-line TB drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) represented 58% of all measurements. Overall, 83.2% of 1407 measurements were accurate, and the median absolute inaccuracy was 7.3% (IQR, 3.3%-15.1%). The absolute inaccuracy was related to the measured anti-TB drug and to the performing laboratory, but not to the concentration level or to the analytical technique used. The median absolute inaccuracies of rifampicin and isoniazid were relatively high (10.2% and 10.9%, respectively). CONCLUSIONS: The 10 year results of this external QC programme illustrate the need for continuous external QC for the measurement of anti-TB drugs for research and patient care purposes, because one in six measurements was inaccurate. Participation in the programme alerts laboratories to previously undetected analytical problems.

2.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259101

RESUMO

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Complexo Mycobacterium avium , Pneumopatias/microbiologia
3.
Chest ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38040054

RESUMO

BACKGROUND: Results of retrospective studies have suggested clofazimine as an alternative for rifampicin in the treatment of Mycobacterium avium complex pulmonary disease (MAC-PD). RESEARCH QUESTION: Is a treatment regimen consisting of clofazimine-ethambutol-macrolide noninferior to the standard treatment regimen (rifampicin-ethambutol-macrolide) in the treatment of MAC-PD? STUDY DESIGN AND METHODS: In this single-center, nonblinded clinical trial, adult patients with MAC-PD were randomly assigned in a 1:1 ratio to receive rifampicin or clofazimine as adjuncts to an ethambutol-macrolide regimen. The primary outcome was sputum culture conversion following 6 months of treatment. RESULTS: Forty patients were assigned to receive either rifampicin (n = 19) or clofazimine (n = 21) in addition to ethambutol and a macrolide. Following 6 months of treatment, both arms showed similar percentages of sputum culture conversion based on an intention-to-treat analysis: 58% (11 of 19) for rifampicin and 62% (13 of 21) for clofazimine. Study discontinuation, mainly due to adverse events, was equal in both arms (26% vs 33%). Based on an on-treatment analysis, sputum culture conversion following 6 months of treatment was 79% in both groups. In the clofazimine arm, diarrhea was more prevalent (76% vs 37%; P = .012), while arthralgia was more frequent in the rifampicin arm (37% vs 5%; P = .011). No difference in the frequency of QTc prolongation was seen between groups. INTERPRETATION: A clofazimine-ethambutol-macrolide regimen showed similar results to the standard rifampicin-ethambutol-macrolide regimen and should be considered in the treatment of MAC-PD. The frequency of adverse events was similar in both arms, but their nature was different. Individual patient characteristics and possible drug-drug interactions should be taken into consideration when choosing an antibiotic regimen for MAC-PD. CLINICAL TRIAL REGISTRATION: EudraCT; No.: 2015-003786-28; URL: https://eudract.ema.europa.eu.

4.
Antimicrob Agents Chemother ; 67(12): e0078823, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014946

RESUMO

Treatment of skin and soft tissue infections with nontuberculous mycobacteria sometimes fails despite repeated debridements and long-term systemic antibiotic therapy. These treatment-refractory infections can cause significant morbidity and pose a treatment challenge. Following surgery, we treated three patients with negative pressure wound therapy with the instillation and dwell time of topical antibiotics, in addition to systemic antibiotic treatment. Treatment was successful and well tolerated, except for some local irritation.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Infecções dos Tecidos Moles , Humanos , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/cirurgia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/cirurgia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Pele
5.
Antimicrob Agents Chemother ; 67(10): e0068323, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37768317

RESUMO

Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.


Assuntos
Citocromo P-450 CYP1A2 , Tuberculose Pulmonar , Adulto , Humanos , Midazolam/uso terapêutico , Citocromo P-450 CYP2D6/metabolismo , Cafeína , Rifampina/uso terapêutico , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/uso terapêutico , Tolbutamida , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Omeprazol , Interações Medicamentosas , Tuberculose Pulmonar/tratamento farmacológico , Digoxina/uso terapêutico
6.
Clin Microbiol Infect ; 29(2): 182-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35843564

RESUMO

BACKGROUND: Antimicrobial stewardship (AMS) teams are responsible for performing an AMS programme in their hospitals that aims to improve the quality of antibiotic use. Measuring the quality of antimicrobial use is a core task of a stewardship team. Measurement provides insight into the current quality of antibiotic use and allows for the establishment of goals for improvement. Yet, a practical description of how such a quality measurement using quality indicators (QIs) should be performed is lacking. OBJECTIVES: To provide practical guidance on how a stewardship team can use QIs to measure the quality of antibiotic use in their hospital and identify targets for improvement. SOURCES: General principles from implementation science, peer-reviewed publications, and experience from clinicians and researchers with AMS experience. CONTENT: We provide step-by-step guidance on how AMS teams can use QIs to measure the quality of antibiotic use. The principles behind each step are explained and illustrated with the description and results of an audit of patients receiving outpatient parenteral antimicrobial therapy in four Dutch hospitals. IMPLICATIONS: Improving the quality of antibiotic use is impossible without first gaining insight into that quality by performing a measurement with validated QIs. This step-by-step practice example of how to use quality indicators in a hospital will help AMS teams to identify targets for improvement. This enables them to perform their AMS programme more effectively and efficiently.


Assuntos
Anti-Infecciosos , Gestão de Antimicrobianos , Humanos , Indicadores de Qualidade em Assistência à Saúde , Pacientes Ambulatoriais , Anti-Infecciosos/uso terapêutico , Antibacterianos/uso terapêutico , Hospitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...